Категория
Информатика
Тип
реферат
Страницы
33 стр.
Дата
08.08.2013
Формат файла
.doc — Microsoft Word
Архив
881235.zip — 26.32 kb
  • razvitie-vychislitelnoj-texniki-i-vozniknovenie-personalnyx-kompjuterov_881235_1.doc — 112.5 Kb
  • Readme_docus.me.txt — 125 Bytes
Оцените работу
Хорошо  или  Плохо


Текст работы

ФГОУ ВПО Ст.Г.А.У.
РЕФЕРАТ
 по информатике на тему: «Развитие вычислительной техники и возникновение персональных компьютеров»
Выполнила:   студентка 1-го курса 3 группы
факультета Бухучёта и аудита
Саркисова Анэлла
Проверила: Наружная Галина Алексеевна
Ставрополь, 2010 г.
Содержание

o
      
Эволюция средств вычислительной техники
o
      
Поколения
  современных компьютеров

     -
  первое поколение компьютеров
1945-1956 годы

     -
  второе поколение компьютеров
1956-1963 годы

     -
  третье поколение компьютеров
  1964-1971 годы

     -
  четвертое поколение компьютеров
  с 1971 года и по настоящее время

o
      
Возникновение и развитие персональных компьютеров
     -
  
Consumer PC (массовый ПК)
           -
 
Office PC (деловой ПК)
             -
 
Mobile PC (портативный ПК)
           -
 
Workstation PC (рабочая станция)
           -
 
Entertainment PC (развлекательный ПК)
            -
 Новые виды ПК

o
      
Список используемой литературы
XX век характеризуется необходимостью обрабатывать огромное количество информации. Для сбора, хранения, использования и распространения большого объема информации необходимо специальное устройство. Таким устройством является компьютер. В настоящее время компьютеры представлены практически во всех областях жизни человека.
Эволюция средств вычислительной техники

   Современным компьютерам предшествовали механические и электромеханические устройства. В 1642 году французский математик и философ
Блез Паскаль в возрасте 18 лет сконструировал суммирующую машину. Машина Паскаля состояла из восьми движущихся дисков с прорезями и могла суммировать числа до восьми знаков. Для своей машины Паскаль использовал десятичную систему исчисления. Например, если первый диск смещался на десять прорезей, что составляло его полный оборот, он перемещал следующий диск на одну позицию и, таким образом, увеличивал количество десятков на один. Когда диск, представляющий десятки, делал полный оборот, он смещал следующий диск, увеличивая количество сотен, и т. д.

   Известны и более ранние попытки создания механических суммирующих машин. Описание суммирующей машины, напоминающей по характеристикам машину Паскаля, в 1967 году было обнаружено в записках, принадлежащих Леонардо да Винчи. Подобное устройство также было описано в 1623 году
Вильгельмом Шикардом. До наших дней дошли только чертежи Шикарда, обнаруженные в 1956 году. В 1694 году немецкий математик и философ
Готфрид Вильгельм Лейбниц, используя чертежи и рисунки Паскаля, улучшил машину Паскаля, добавив возможность перемножать числа. Вместо обычных шестеренок Лейбниц использовал пошаговый барабан.

   Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз
Чарльз Калмар изобрел машину, которая могла производить четыре основных арифметических действия. Машину Калмара назвали арифмометр. Благодаря своей универсальности, арифмометры использовались довольно длительное время. Многие ученые и изобретатели совершенствовали эти устройства. Так, швед, живший в России, Вильгодт Однер в 1880 году создал арифмометр, в котором использовалось переменное число зубцов. Позднее на основе арифмометра Однера был создан арифмометр "Феликс", выпускавшийся в СССР вплоть до 70-х годов.

   Начало эры компьютеров в том виде, в котором они существуют сейчас, связано с именем английского математика
Чарльза Бэббиджа, который в 30-х годах
XIX века предложил идею вычислительной машины, осуществленную лишь в середине XX века. Бэббидж обратил внимание на то, что машина может без ошибок выполнять вычисление больших математических таблиц посредством простого повторения шагов. Работая над этой проблемой, в 1822 году Бэббидж предложил проект машины для решения дифференциальных уравнений. Для повторения операций в машине Бэббиджа должна была использоваться энергия пара. Таким образом, процесс вычислений действительно был автоматизирован, то есть проходил без участия человека. В дальнейшем Бэббидж решил создать модель универсальной вычислительной машины, способной выполнять широкий круг задач. Он назвал ее аналитической машиной.
   У аналитической машины Бэббиджа были все основные черты современного компьютера. Состоящая более чем из 50000 компонентов аналитическая машина включала устройство ввода информации, блок управления, запоминающее устройство и устройство вывода результатов. Аналитическая машина могла выполнять определенный набор инструкций, которые записывались на перфокартах. Перфокарты представляли собой прямоугольные карточки из картона. Каждой инструкции аналитической машины соответствовала определенная последовательность дырочек, которые пробивались на перфокартах, а затем с помощью устройства ввода поступали в блок управления. Хотя аналитическая машина в том виде, в котором ее задумывал Бэббидж, так и не была создана, идеи, заложенные Бэббиджем, оказали огромное влияние на развитие вычислительной техники. Автоматизация вычислений, универсальность вычислительной машины, набор внутренних инструкций, общая конструктивная схема, организация ввода и вывода информации - все эти элементы впоследствии были использованы при создании компьютера.
·
       
Исследователи творчества Чарльза Бэббиджа непременно отмечают особую роль в разработке проекта Аналитической машины графини Огасты Ады Лавлейс (1815-1852), дочери известного поэта лорда Байрона. Именно ей принадлежала идея использования перфорированных карт для программирования вычислительных операций (1843). В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цветы и листья». Леди Аду можно с полным основанием назвать самым первым в мире программистом. Сегодня ее именем назван один из известных языков программирования.
   В 1889 году американский изобретатель
Герман Холлерит сконструировал перфокарточное устройство для решения статистических задач. В отличие от идеи Бэббиджа, хранить на перфокартах инструкции, Холлерит использовал перфокарты для хранения данных. Кроме того, для работы перфокарточного устройства использовалось электричество. Цифры на перфокарте изображались одинарными отверстиями, а буквы алфавита - двойными. Специальный электрический прибор опознавал отверстия на перфокартах и посылал сигналы в обрабатывающее устройство. Вычислительная машина Холлерита оказалась по тем временам очень быстрым устройством обработки данных, а перфокарты - удобным способом хранения данных. Машина Холлерита была использована для обработки результатов переписи населения США. Обработка результатов предыдущей переписи 1880 года заняла около 10 лет. За это время успело вырасти новое поколение американцев. С помощью машины Холлерита те же данные были обработаны всего за шесть недель. В 1896 году Холлерит основал компанию по производству перфорирующих устройств -
Tabulating Machine Company , которая в 1924 году пос-5серии слияний и поглощений превратилась в знаменитую компанию по производству компьютеров - IBM ( International Business Machines ).
   Кроме механических и электромеханических вычислительных машин появились также аналоговые вычислительные машины, в которых обработка информации происходила с помощью специально подобранного физического процесса, моделирующего вычисляемую закономерность. Простейшей аналоговой вычислительной машиной являются часы. Первыми аналоговыми машинами были устройства, в которых главными элементами были интегрирующие и дифференцирующие устройства, позволяющие мгновенно вычислять интеграл и производную заданной функции, отслеживая ее изменение во времени.
   Полезным свойством аналоговой вычислительной машины является практически мгновенное получение решения после задания необходимых параметров задачи установления моделирующего физического процесса. Однако круг задач, которые может решать аналоговая машина, ограничен теми физическими процессами, которые она в состоянии моделировать. Кроме того, точность решения аналоговой машины часто недостаточна для определенного круга задач, а повышение точности связано со значительным ростом стоимости вычислений.
    С другой стороны, механические и электромеханические вычислительные машины, предназначенные для решения сложных задач, требуют наличия огромного количества элементов для представления чисел и связей между ними, что существенно усложняет их работу.
   Решая эту проблему, американцы
Джон Атанасов и
Клиффорд Берри
в
1940 году разработали модель полностью электронного компьютера, использующего единую истому представления чисел и связей между ними - булеву алгебру. Их подход базировался на работах английского математика
XIX века
Джорджа Буля , посвященных аппарату символической логики. В основе булевой алгебры лежит интерпретация элементов булевой алгебры как высказываний, принимающих значение "истина" или "ложь".
Атанасов и Берри применили эту концепцию для электронных устройств. Истине соответствовало прохождение электрического тока, а лжи - его отсутствие. Для представления чисел
Атанасов и Берри предложили использовать двоичную систему исчисления.

   В
1936 году английский математик
Алан Тьюринг опубликовал работу
"О вычислимых числах", заложив теоретические основы теории алгоритмов. Концепция Тьюринга возникла в результате проведенного им анализа действий человека, выполняющего в соответствии с заранее разработанным планом те или иные вычисления, то есть последовательные преобразования знаковых комплексов. Анализ этот, в свою очередь, был осуществлен им с целью решения проблемы поиска точного математического эквивалента для общего интуитивного представления об алгоритме. Работа Тьюринга стимулировала возникновение абстрактной теории автоматов и во многом определила ее особенности.

   В своей работе Тьюринг описал абстрактную вычислительную машину, которая получила название машины Тьюринга. Машина Тьюринга представляет собой автоматическое устройство, способное находиться в конечном числе внутренних состояний и снабженное бесконечной внешней памятью - лентой. Среди состояний выделяются два - начальное и конечное. Лента разделена на клетки. В каждую клетку может быть записана любая из букв некоторого алфавита. В пустую клетку записана "пустая буква". В каждый момент времени машина Тьюринга находится в одном из своих состояний и, рассматривая одну из клеток ленты, воспринимает записанный в ней символ.
   В неконечном состоянии машина Тьюринга совершает шаг, который определяется ее текущим состоянием и символом на ленте, воспринимаемым в данный момент. Шаг машины Тьюринга заключается в следующем:

1. В рассматриваемой клетке записывается символ, совпадающий со старым, или пустой.

2. Машина переходит в новое состояние, совпадающее со старым, или конечное.

3. Лента сдвигается на одну клетку или остается на месте.


    Перечисление всех возможных шагов машины Тьюринга, в зависимости от текущей комбинации неконечного состояния и воспринимаемого символа называется программой данной машины Тьюринга. Конфигурация машины Тьюринга определяется конкретным заполнением клеток ленты символами и внутренним состоянием, в котором машина находится. Если зафиксировать какую-либо неоконечную конфигурацию машины в качестве исходной, то работа машины будет заключаться в последовательном преобразовании исходной конфигурации в соответствии с программой машины до тех пор, пока не будет достигнуто конечное состояние.

    Тьюринг не преследовал цели изобрести компьютер. Тем не менее, описанная им абстрактная машина определила некоторые характеристики современных компьютеров. Так, например, бесконечная лента является аналогом оперативной памяти современного компьютера. Впервые подобная модель памяти была использована в компьютере Атанасова и Берри.
Поколения современных компьютеров

    Развитие вычислительной техники в современном периоде принято рассматривать с точки зрения смены поколений компьютеров. Каждое поколение компьютеров в начальный момент развития характеризуется качественным скачком в росте основных характеристик компьютера, вызванным обычно переходом на новую элементную базу, а также относительной стабильностью архитектурных и логических решений.

    Разбиение поколений компьютеров по годам весьма условно. В то время, как начиналось активное использование компьютеров одного поколения, создавались посылки для возникновения следующего. Кроме элементной базы и временного интервала используются следующие показатели развития компьютеров одного поколения: быстродействие, архитектура, программное обеспечение, уровень развития внешних устройств. Другим важным качественным показателем является широта области применения компьютеров.
Первое поколение компьютеров (1945-1956 годы)

   С началом второй мировой войны правительства разных стран начали разрабатывать вычислительные машины, осознавая их стратегическую роль в ведении войны. Увеличение финансирования в значительной степени стимулировало развитие вычислительной техники. В 1941 году немецкий инженер
Конрад Цузе разработал вычислительную машину
Z 2, выполнявшую расчеты, необходимые при проектировании самолетов и баллистических снарядов. В 1943 году английские инженеры завершили создание вычислительной машины для дешифровки сообщений немецкой армии, названной "Колосс". Однако эти устройства не были универсальными вычислительными машинами, они предназначались для решения конкретных задач.
    В 1944 году американский инженер
Говард Эйкен при поддержке фирмы
IBM сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный
"Марк
I
", по площади занимал примерно половину футбольного поля и включал более 600 километров кабеля. В компьютере "Марк I " использовался принцип электромеханического реле, заключающийся в том, что электромагнитные сигналы перемещали механические части. "Марк I " был довольно медленной машиной: для того чтобы произвести одно вычисление требовалось 3-5 с. Однако, несмотря на огромные размеры и медлительность, "Марк I " стал более универсальным вычислительным устройством, чем
машина Цузе или "Колосс". "Марк
I " управлялся с помощью программы, которая вводилась с перфоленты. Это дало возможность, меняя вводимую программу, решать довольно широкий класс математических задач.
   В 1946 году американские ученые
Джон Мокли и Дж. Преспер Эккерт сконструировали электронный вычислительный интегратор и калькулятор (ЭНИАК) - компьютер, в котором электромеханические реле были заменены на электронные вакуумные лампы. Применение вакуумных ламп позволило увеличить скорость работы ЭНИАК в 1000 раз по сравнению с "Марк
I ". ЭНИАК состоял из 18000 вакуумных ламп, 70000 резисторов, 5 миллионов соединительных спаек и потреблял 160 кВт электрической энергии, что по тем временам было достаточно для освещения большого города. Между тем, ЭНИАК стал работающим прообразом .современного компьютера. Во-первых, ЭНИАК был основан на полностью цифровом принципе обработки информации. Во-вторых, ЭНИАК стал действительно универсальной вычислительной машиной, он использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.
   Следующий важный шаг в совершенствовании вычислительной техники сделал американский математик
Джон фон Нейман . Ранние вычислительные машины могли выполнять только команды, поступающие извне, причем команды выполнялись поочередно. Хотя использование перфокарт позволяло упростить процесс ввода команд, тем не менее, часто процесс настройки вычислительной машины и ввода команд занимал больше времени, чем собственно решение поставленной задачи. Фон Нейман предложил включить в состав компьютера для хранения последовательности команд и данных специальное устройство - память. Кроме того, Джон фон Нейман предложил реализовать в компьютере возможность передачи управления от одной программы к другой. Возможность хранить в памяти компьютера разные наборы команд (программы), приостанавливать выполнение одной программы и передавать управление другой, а затем возвращаться к исходной значительно расширяла возможности программирования для вычислительных машин. Другой ключевой идеей, предложенной фон Нейманом, стал процессор (центральное обрабатывающее устройство), который должен был управлять всеми функциями компьютера. В 1945 году Джон фон Нейман подготовил отчет, в котором определил следующие основные принципы работы и элементы архитектуры компьютера:


1. Компьютер состоит из процессора (центрального обрабатывающего устройства), памяти и внешних устройств.

2. Единственным источником активности (не считая стартового или аварийного вмешательства человека) в компьютере является процессор, который, в свою очередь, управляется программой, находящейся в памяти.

3. Память компьютера состоит из ячеек, каждая из которых имеет свой уникальный адрес. Каждая ячейка хранит команду программы или единицу обрабатываемой информации. Причем и команда, и информация имеют одинаковое представление.

4. В любой момент процессор выполняет одну команду программы, адрес которой находится в специальном регистре процессора - счетчике команд.
5. Обработка информации происходит только в регистрах процессора. Информация в процессор поступает из памяти или от внешнего устройства.
6. В каждой команде программы зашифрованы следующие предписания: из каких ячеек взять обрабатываемую информацию; какие операции совершить с эй информацией; в какие ячейки памяти направить результат; как изменить содержимое счетчика команд, чтобы знать, откуда взять следующую команду для выполнения.
7. Процессор исполняет программу команда за командой в соответствии с изменением содержимого счетчика команд до тех пор, пока не получит команду остановиться.

   В дальнейшем архитектура фон Неймана незначительно изменялась и дополнялась, но исходные принципы управления работой компьютера с помощью хранящихся в памяти программ остались нетронутыми, Подавляющее большинство современных компьютеров построено именно по архитектуре фон Неймана. В 1951 году был создан первый компьютер, предназначенный для коммерческого использования, - УНИВАК (универсальный автоматический компьютер), в котором были реализованы все принципы архитектуры фон Неймана. В 1952 году с помощью УНИВАК был предсказан результат выборов президента США.

Работы по созданию вычислительных машин велись и в СССР. Так, в 1950 году в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева была разработана и введена в эксплуатацию МЭСМ (малая электронная счетная машина). МЭСМ стала первой отечественной универсальной ламповой вычислительной машиной в СССР. В 1952-1953 годах МЭСМ оставалась самой быстродействующей (50 операций в секунду) вычислительной машиной в Европе. Принципы построения МЭСМ были разработаны С. А. Лебедевым независимо от аналогичных работ на Западе.

В компьютерах первого поколения использовался машинный язык - способ записи программ, допускающий их непосредственное исполнение на компьютере. Программа на машинном языке представляет собой последовательность машинных команд, допустимых для данного компьютера. Процессор непосредственно воспринимает и выполняет команды, выраженные в виде двоичных кодов. Для каждого компьютера существовал свой собственный машинный язык. Это также ограничивало область применения компьютеров первого поколения.

   Появление первого поколения компьютеров стало возможно благодаря трем техническим новшествам: электронным вакуумным лампам, цифровому кодированию информации и созданию устройств искусственной памяти на электростатических трубках. Компьютеры первого поколения имели невысокую производительность: до нескольких тысяч операций в секунду. В компьютерах первого поколения использовалась архитектура фон Неймана. Средства программирования и программного обеспечение еще не были развиты, использовался низкоуровневый машинный язык. Область применения компьютеров была ограничена.
Второе поколение компьютеров (1956-1963 годы)

Электронные вакуумные лампы выделяли большое количество тепла, поглощали много электрической энергии, были громоздкими, дорогими и ненадежными. Как бедствие, компьютеры первого поколения, построенные на вакуумных лампах, обладали низким быстродействием и невысокой надежностью. В 1947 году сотрудники американской компании "Белл" Уильям Шокли, Джон Бардин и Уолтер Бреттейн изобрели транзистор. Транзисторы выполняли те же функции, что и электронные лампы, но использовали электрические свойства полупроводников. Посравнению с вакуумными трубками транзисторы занимали в 200 раз меньше места и потребляли в 100 раз меньше электроэнергии. В то же время появляются новые устройства для организации памяти компьютеров - ферритовые сердечники изобретением транзистора и использованием новых технологий хранения данных в памяти появилась возможность значительно уменьшить размеры компьютеров, сделать их более быстрыми и надежными, а также значительно увеличить емкость памяти компьютеров.

    В 1954 году компания Texas Instruments объявила о начале серийного производства транзисторов, а в 1956 году ученые Массачусетского технологического института создали первый полностью построенный на транзисторах компьютер ТХ-О.
   Машинный язык, применявшийся в первом поколении компьютеров, был крайне неудобен для восприятия человеком. Числовая кодировка операций, адресов ячеек и обрабатываемой информации, зависимость вида программы от ее места в памяти не давали возможности следить за смыслом программы. Для преодоления этих неудобств был придуман язык ассемблер. Для записи кодов операций и обрабатываемой информации в ассемблере используются стандартные обозначения, позволяющие записывать числа и текст в общепринятой форме, а для кодов команд - принятые мнемонические обозначения. Для обозначения величин, размещаемых в памяти, можно применять любые имена, отвечающие смыслу программы. После ввода программы ассемблер сам заменяет символические имена на адреса памяти, а символические коды команд на числовые. Использование ассемблера сделало процесс написания программ более наглядным.
      В конце 50-х - начале 60-х годов компьютеры второго поколения стали интенсивно использоваться государственными организациями и крупными компаниями для решения различных задач. К 1965 году большая часть крупных компаний обрабатывала финансовую информацию с помощью компьютеров. Постепенно они приобретали черты современного нам компьютера. Так, в этот период были сконструированы такие устройства, как графопостроитель и принтер, носители информации на магнитной ленте и магнитных дисках и др.
   Расширение области применения компьютеров потребовало создания новых технологий программирования. Программное обеспечение, написанное на языке ассемблер для одного компьютера, было непригодно для работы на другом компьютере. По этой причине, в частности, не удавалось создать стандартную операционную систему - основную управляющую программу компьютера, так как каждый производитель компьютеров разрабатывал свою операционную систему на своем ассемблере.
   Специалисты, использующие в своей деятельности компьютеры, вскоре ощутили потребность в более естественных языках, которые бы упрощали процесс программирования, а также позволяли переносить программы с одного компьютера на другой. Подобные языки программирования получили название языков высокого уровня. Для их использования необходимо иметь компилятор (или интерпретатор), то есть программу, которая преобразует операторы языка в машинный язык данного компьютера.

Одним из первых языков программирования высокого уровня стал Фортран (
FORTRAN - FORmula TRANslation ), который предназначался для естественного сражения математических алгоритмов и стал необычайно популярен среди ученых. Н a Фортране можно писать большие программы, разбивая задачу на несколько частей (подпрограммы), которые программируются отдельно, а затем объединяются в единое целое. Так как Фортран предназначен в основном для вычислений, в нем отсутствовали развитые средства работы со структурами данных. Этот недостаток был исправлен в языке Кобол ( COBOL - Common Business Oriented Language ). Кобол специально предназначался для обработки финансово-экономических данных. Кроме того, разработчики постарались сделать Кобол максимально похожим на естественный английский язык, что позволило писать программы на этом языке даже неспециалистам в программировании. Со вторым поколением компьютеров началось развитие индустрии программного обеспечения.

В целом, данный период развития вычислительной техники характеризуется применением для создания компьютеров транзисторов и памяти на ферритовых сердечниках, увеличением быстродействия компьютеров до нескольких сотен тысяч операций в секунду, возникновением новых технологий программирования, язык
o в программирования высокого уровня, операционных систем. Компьютеры второго поколения получили широкое распространение, они использовались для научных, инженерных и финансовых расчетов, для обработки больших объемов данных на предприятиях, в банках, государственных организациях.

Третье поколение компьютеров (1964-1971 годы)

В 1958 инженер компании
Texas Instruments Джек Килби предложил идею интегральной микросхемы - кремниевого кристалла, на который монтируются миниатюрные транзисторы и другие элементы. В том же году Килби представил первый образец интегральной микросхемы, содержащий пять транзисторных элементов на кристалле германия. Микросхема Килби занимала чуть больше сантиметра площади и была несколько миллиметров толщиной. Год спустя, независимо от Килби, Нойс разработал интегральную микросхему на основе кристалла кремния. Последствии Роберт Нойс основал компанию "Интел" по производству интегральных микросхем. Микросхемы работали значительно быстрее транзисторов и потребляли значительно меньше энергии.
   Первые интегральные микросхемы состояли всего из нескольких элементов. Однако, используя полупроводниковую технологию, ученые довольно быстро научились размещать на одной интегральной микросхеме сначала десятки, а затем сотни и больше транзисторных элементов.

В 1964 году компания
IBM выпустила компьютер 1 MB System 360, построенный на основе интегральных микросхем. Семейство компьютеров IBM System 360 - самое многочисленное семейство компьютеров третьего поколения и одно из самых удачных в истории вычислительной техники. Выпуск этих компьютеров можно считать началом массового производства вычислительной техники. Всего было выпущено более 20 000 экземпляров System 360.
   1 MB System 360 относится к классу так называемых мэйнфреймов. Компания DEC ( Digital Equipment Corporation ) представила модель миникомпьютера PDP -8. Мини-компьютеры, или компьютеры средней производительности, характеризуются высокой надежностью и сравнительно низкой стоимостью. Низкая по сравнению со стоимостью суперкомпьютеров стоимость миникомпьютеров позволила начать применять их в небольших организациях - исследовательских лабораториях, офисах, на небольших промышленных предприятиях.
    В то же время проходило совершенствование программного обеспечения. Операционные системы строились таким образом, чтобы поддерживать большее количество внешних устройств, появились первые коммерческие операционные системы и новые прикладные программы. В 1968 году на одной из конференций Дуглас Энгельбарт из Станфордского института продемонстрировал созданную им систему взаимодействия компьютера с пользователем, состоящую из клавиатуры, указателя "мышь" и графического интерфейса, а также некоторые программы, в частности текстовый процессор и систему гипертекста. В 1964 году появился язык программирования Бейсик ( BASIC - Beginner ' s All - Purpose Symbolic Instruction Code ), предназначенный для обучения начинающих программистов. Бейсик обеспечивал быстрый ввод и проверку программ. Бейсик не очень подходил для написания серьезных программ, однако он давал общее представление о программировании и позволял многим далеким от компьютеров людям быстро овладеть основными навыками программирования. В 1970 году щвейцарец Никлас Вирт разработал язык программирования Паскаль, также предназначенный для обучения принципам программирования. Создававшийся как язык для обучения, Паскаль оказался очень удобен для решения многих прикладных задач. Он прекрасно обеспечивал применение методов структурного программирования, что стало необходимо при создании больших программных систем.
   0сновой для компьютеров третьего поколения послужили интегральные микросхемы, что позволило значительно уменьшить стоимость и размеры компьютеров, началось массовое производство компьютеров. В данный период развития вычислительной техники продолжалось увеличение скорости обработки информации. Компьютеры третьего поколения работали со скоростью до одного миллиона операций в секунду. Появились новые внешние устройства, облегчающие взаимодействие человека с компьютером. Увеличение быстродействия компьютеров и области их применения потребовало разработки новых методов создания программного обеспечения. Появились первые коммерческие операционные системы реального времени, специально разработанные для них языки программирования высокого уровня. Область применения компьютеров третьего поколения необычайно широка: системы обработки данных, управления, проектирования, .решения различных коммерческих задач.
Четвертое поколение компьютеров (с 1971 года и по настоящее время)

В 1965 году председатель совета директоров компании "Интел" Гордон Мур предположил, что количество элементов на интегральных микросхемах должно удваиваться каждые 18 месяцев. В дальнейшем это правило, известное как закон, было применено к скорости микропроцессоров и до сих пор не нарушалось.



Ваше мнение



CAPTCHA