Категория
Математика
Тип
реферат
Страницы
7 стр.
Дата
26.04.2010
Формат файла
.doc — Microsoft Word
Архив
41476.zip — 62.92 kb
  • priblizhennoe-vychislenie-opredelennogo-integrala-pri-pomoshhi-kvadraturnoj-formuly-chebys_41476_1.DOC — 414 Kb
  • Readme_docus.me.txt — 125 Bytes
Оцените работу
Хорошо  или  Плохо



Текст работы

МИНИСТЕКРСТВО ОБРАЗОВАНИЯ УКРАИНЫГОСУДАРСТВЕННЫЙ ХИМИКОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТКАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИКУРСОВАЯ РАБОТАна тему
“Приближенное вычисление определенного интегралапри помощи квадратурной формулы Чебышева”Студента 2-го курса: Полякова Е.В.
Научный руководитель: Куприна Л.А.
Днепропетровск 2000г.
Содержание.
1. Общая постановка и анализ задания.
1.1. Введение
1.2. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа
1.3 Формула трапеций и средних прямоугольников
1.4. Общая формула Симпсона (параболическая формула)
1.5. Квадратурная формула Чебышева
2 . Решение контрольного примера
3. Описание программы Integral. pas. Алгоритм.
4. Заключение и выводы.
5. Список литературы.
6. Листинг программы. Вывод на экран.
1. Общая постановка и анализ задачи.
1.1. Введение.
Требуется найти определенный интеграл
I =
по квадратурной формуле Чебышева.
Рассмотрим, что представляет из себя вообще квадратурная формула, и как можно с ее помощью вычислить приближенно интеграл.
Известно, что определенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1).
Рис. 1. Криволинейная трапеция.
Если f(x) непрерывна на отрезке [a, b], и известна ее первообразная F(x), то определенный интеграл от этой функции в пределах от а до b может быть вычислен по, известной всем, формуле Ньютона - Лейбница= F(b) - F(a)
где
F’(x) = f(x)
Однако во многих случаях F(x) не может быть найдена, или первообразная получается очень сложной для вычисления.
Кроме того, функция часто задается




Ваше мнение



CAPTCHA