Категория
Информатика
Тип
реферат
Страницы
3 стр.
Дата
12.11.2009
Формат файла
.rtf — Rich Text Format (Wordpad)
Архив
20873.zip — 4.85 kb
  • reshenie-nelinejnyx-uravnenij_20873_1.rtf — 18.54 Kb
  • Readme_docus.me.txt — 125 Bytes
Оцените работу
Хорошо  или  Плохо


Текст работы

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ SDL SDL
ЧИСЛЕННОЕ РЕШЕНИЕ
НЕЛИНЕЙНЫХ УРАВНЕНИЙ.
1п. Общий вид нелинейного уравнения
F(x)=0
Нелинейные уравнения могут быть двух видов:
Алгебраические
anxn + an-1xn-1 +… + a0 = 0
Трансцендентные- это уравнения в которых х является аргументом
тригонометрической, логарифмической или показательной функции.
Значение х0 при котором существует равенство f(x0)=0 называется корнем
уравнения.
В общем случае для произвольной F(x) не существует аналитических формул
определения корней уравнения. Поэтому большое значение имеют методы, которые
позволяют определить значение корня с заданной точностью. Процесс отыскания
корней делиться на два этапа:
Отделение корней, т.е. определение отрезка содержащего один корень.
Уточнение корня с заданной точностью.
Для первого этапа нет формальных методов, отрезки определяются или табуляцией
или исходя из физического смысла или аналитическими методами.
Второй этап, уточнение корня выполняется различными итерационными методами, суть
которых в том, что строится числовая последовательность xi сходящихся к корню x0
Выходом из итерационного процесса являются условия:
│f(xn)│≤ε
│xn-xn-1│≤ε
рассмотрим наиболее употребляемые на практике методы: дихотомии, итерации и
касательных.
2 п. Метод половинного деления.
Дана монотонная, непрерывная функция f(x), которая содержит корень на отрезке
[a,b], где b>a. Определить корень с точностью ε, если известно, что f(a)*f(b)a. Определить корень с точностью ε.
Суть метода
Дано f(x)=0 (1)
Заменим уравнение (1) равносильным уравнением x=φ(x) (2). Выберем грубое,



Ваше мнение



CAPTCHA