Категория
Информатика
Тип
реферат
Страницы
28 стр.
Дата
06.03.2013
Формат файла
.doc — Microsoft Word
Архив
170843.zip — 60.83 kb
  • iskusstvennyj-intellekt-v-upravlenii-firmoj_170843_1.doc — 157 Kb
  • Readme_docus.me.txt — 125 Bytes
Оцените работу
Хорошо  или  Плохо


Текст работы

Содержание:

1.  
История развития науки о
искусственном интеллекте.

2.  
Описание нейронных сетей.

2.1.          
Цель классификации

2.2.          
Использование нейронных сетей в
качестве классификатора.

2.3.          
Подготовка исходных данных.

2.4.          
Кодирование выходных значений.

2.5.          
Выбор объема сети.

2.6.          
Выбор архитектуры сети.

2.7.          
Алгоритм построения классификатора
на основе нейронных сетей.

3.  
Прогнозирование объёма
продаж кондитерских изделий с помощью нейронных сетей.

3.1.          
Постановка задачи.

3.2.          
Метод решения.

3.3.          
Результат.

4.  
Вывод.

История развития науки о искусственном интеллекте.

Искусственный интеллект -
одна из новейших наук, появившихся во второй половине 20-го века на базе
вычислительной техники, математической логики, программирования, психологии,
лингвистики, нейрофизиологии и других отраслей знаний. Искусственный интеллект
- это образец междисциплинарных исследований, где соединяются профессиональные
интересы специалистов разного профиля. Само название новой науки возникло в
конце 60-х годах, а в 1969 г. в Вашингтоне (США) состоялась первая Всемирная
конференция по искусственному интеллекту. Известно, что совокупность научных
исследований обретает права науки, если выполнены два необходимых условия. У
этих исследований должен быть объект изучения, не совпадающий с теми, которые
изучают другие науки. И должны существовать специфические методы исследования
этого объекта, отличные от методов других, уже сложившихся наук. Исследования,
которые объединяются сейчас термином "искусственный интеллект", имеют
свой специфический объект изучения и свои специфические методы. В этой статье
мы обоснуем это утверждение. Когда в конце 40-х - начале 50-х годов появились
ЭВМ, стало ясно, что инженеры и математики создали не просто быстро работающее
устройство для вычислений, а нечто более значительное. Оказалось, что с помощью
ЭВМ можно решать различные головоломки, логические задачи, играть в шахматы,
создавать игровые программы. ЭВМ стали принимать участие в творческих
процессах: сочинять музыкальные мелодии, стихотворения и даже сказки. Появились
программы для перевода с одного языка на другой, для распознавания образов,
доказательства теорем. Это свидетельствовало о том, что с помощью ЭВМ и
соответствующих программ можно автоматизировать такие виды человеческой
деятельности, которые называются интеллектуальными и считаются доступными лишь
человеку. Несмотря на большое разнообразие невычислительных программ, созданных
к началу 60-х годов, программирование в сфере интеллектуальной деятельности
находилось в гораздо худшем положении, чем решение расчетных задач. Причина
очевидна. Программирование для задач расчетного характера опиралось на
соответствующую теорию - вычислительную математику. На основе этой теории было
разработано много методов решения задач. Эти методы стали основой для
соответствующих программ. Ничего подобного для невычислительных задач не было.
Любая программа была здесь уникальной, как произведение искусства. Опыт
создания таких программ никак не обобщался, умение их создавать не
формализовалось. Никто не станет отрицать, что, в отличие от искусства, у науки
должны быть методы решения задач. С помощью этих методов все однотипные задачи
должны решаться единообразным способом. И "набив руку" на решении
задач определенного типа, легко решать новые задачи, относящиеся к тому же
типу. Но именно таких методов и не смогли придумать те, кто создавал первые
программы невычислительного характера. Когда программист создавал программу дл
игры в шахматы, то он использовал собственны знания о процессе игры. Он
вкладывал их в программу, а компьютер лишь механически выполняли эту программу.
Можно сказать, что компьютер "не отличал" вычислительные программы от
невычислительных. Он одинаковым образом находил корни квадратного уравнения или
писал стихи. В памяти компьютера не было знаний о том, что он на самом деле
делает. Об интеллекте компьютера можно было бы говорить, если бы он сам, на
основании собственных знаний о том, как протекает игра в шахматы и как играют в
эту игру люди, сумел составить шахматную программу или синтезировал программу
для написания несложных вальсов и маршей. Не сами процедуры, с помощью которых
выполняется та или иная интеллектуальная деятельность, а понимание того, как их
создать, как научиться новому виду интеллектуальной деятельности, - вот где
скрыто то, что можно назвать интеллектом. Специальные метапроцедуры обучения
новым видам интеллектуальной деятельности отличают человека от компьютера.
Следовательно, в создании искусственного интеллекта основной задачей становится
реализация машинными средствами тех метапроцедур, которые используются в
интеллектуальной деятельности человека. Что же это за процедуры? В психологии
мышления есть несколько моделей творческой деятельности. Одна из них называется
лабиринтной. Суть лабиринтной гипотезы, на которой основана лабиринтная модель,
состоит в следующем: переход от исходных данных задачи к решению лежит через
лабиринт возможных альтернативных путей. Не все пути ведут к желаемой цели,
многие из них заводят в тупик, надо уметь возвращаться к тому месту, где
потеряно правильное направление. Это напоминает попытки не слишком умелого
школьника решить задачу об упрощении алгебраических выражений. Для этой цели на
каждом шагу можно применять некоторые стандартные преобразования или
придумывать искусственные приемы. Но весьма часто вместо упрощения выражения
происходит его усложнение, и возникают тупики, из которых нет выхода. По мнению
сторонников лабиринтной модели мышления, решение всякой творческой задачи
сводится к целенаправленному поиску в лабиринте альтернативных путей с оценкой
успеха после каждого шага. С лабиринтной моделью связана первая из метапроцедур
- целенаправленный поиск в лабиринте возможностей. Программированию этой
метапроцедуры соответствуют многочисленные процедуры поиска, основанные на
соображениях здравого смысла (человеческого опыта решения аналогичных задач). В
60-х годах было создано немало программ на основе лабиринтной модели, в
основном игровых и доказывающих теоремы "в лоб", без привлечения
искусственных приемов. Соответствующее направление в программировании получило
название эвристического программирования. Высказывались даже предположения, что
целенаправленный поиск в лабиринте возможностей - универсальная процедура,
пригодная для решения любых интеллектуальных задач. Но исследователи отказались
от этой идеи, когда столкнулись с задачами, в которых лабиринта возможностей
либо не существовало, либо он был слишком велик для метапроцедуры поиска, как,
например, при игре в шахматы. Конечно, в этой игре лабиринт возможностей - это
все мыслимые партии игры. Но как в этом астрономически большом лабиринте найти
те партии, которые ведут к выигрышу? Лабиринт столь велик, что никакие мыслимые
скорости вычислений не позволят целенаправленно перебрать пути в нем. И все
попытки использовать для этого человеческие эвристики (в данном случае
профессиональный опыт шахматистов) не дают пути решения задачи. Поэтому
созданные шахматные программы уже давно используют не только метапроцедуру
целенаправленного поиска, но и другие метапроцедуры, связанные с другими
моделями мышления. Долгие годы в психологии изучалась ассоциативная модель
мышления. Основной метапроцедурой модели является ассоциативный поиск и
ассоциативное рассуждение. Предполагается, что решение неизвестной задачи так
или иначе основывается на уже решенных задачах, чем-то похожих на ту, которую
надо решить. Новая задача рассматривается как уже известная, хотя и несколько
отличающаяся от известной. Поэтому способ ее решения должен быть близок к тому,
который когда-то помог решить подобную задачу. Для этого надо обратиться к
памяти и попытаться найти нечто похожее, что ранее уже встречалось. Это и есть
ассоциативный поиск. Когда, увидев незнакомого человека, вы стараетесь
вспомнить, на кого он похож, реализуется метапроцедура ассоциативного поиска.
Но понятие ассоциации в психологии шире, чем просто "похожесть". Ассоциативные
связи могут возникнуть и по контрасту, как противопоставление одного другому, и
по смежности, т. е. в силу того, что некоторые явления возникали в рамках одной
и той же ситуации или происходили одновременно (или с небольшим сдвигом по
времени). Ассоциативное рассуждение позволяет переносить приемы, использованные
ранее, на текущую ситуацию. К сожалению, несмотря на многолетнее изучение
ассоциативной модели, не удалось создать стройную теорию ассоциативного поиска
и ассоциативного рассуждения. Исключение составляет важный, но частный класс
ассоциаций, называемых условными рефлексами. И все же метапроцедура
ассоциативного поиска и рассуждения сыграла важную роль: она помогла создать
эффективные программы в распознавании образов, в классификационных задачах и в
обучении ЭВМ.



Ваше мнение



CAPTCHA