Категория
Информатика
Тип
контрольная работа
Страницы
3 стр.
Дата
25.10.2009
Формат файла
.doc — Microsoft Word
Архив
112561.zip — 336.09 kb
  • viznachennja-ploshh-mzh-funkcjami-ntegralom-za-metodom-trapec-na-mov-pascal_112561_1.doc — 405 Kb
  • Readme_docus.me.txt — 125 Bytes
Рейтинг
10  из 10
Оценок
1
Оцените работу
Хорошо  или  Плохо


Текст работы

Зміст1. Постановка задачі 32. Математичний опис рішення задачі 43. Алгоритм програми 64. Лістинг програми 75. Контрольний приклад 10Список використаної літератури 11Постановка задачі
Скласти програму на мові Pascal розрахунку за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 з точністю е = 0,0001.
2. Математичний опис рішення задачі
Розрахунок за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 (рис.1) здійснюється вирішенням визначеного інтегралу , який саме і визначає площі під графіками. За властивістю інтегралів , тому в якості підінтегральної функції ми беремо функцію F(x) = cos x2 + 1 - 2x^2
Рис.1.
Саме метод трапеції реалізований на мові Pascal у наступному фрагменту програми, у якому для розрахунків використано цикл із заздалегідь визначеним числом повторень:
h:=(b-a)/n;
yp:=0;
x:=a;
for i:=1 to n-1 do
begin
x:=x+h;
yp:=yp+(cos(sqr(x))+1-exp(sqr(x)*ln(2)));
end;
yn:=cos(sqr(a))+1-exp(sqr(a)*ln(2));
yk:=cos(sqr(b))+1-exp(sqr(b)*ln(2));
s:=((yk+yn)/2+yp)*h;
де,
n – кількість відрізків, на які розбивається дільниця інтегрування;
i – допоміжна змінна циклу;
a – початкова межа інтегрування;
b – кінцева межа інтегрування;
h – довжина відрізку інтегрування;
yn – значення підінтегральної функції в початкової точці (точка а);
yk – значення підінтегральної функції в кінцевої точці (точка а);
yp – одне з проміжних значень підінтегральної функції;
s – потрібне значення визначеного інтегралу (площа) за методом трапецій.
3. Алгоритм програми
Алгоритм програми наведено на рис.2.
Рис.2. Алгоритм програми
4. Лістинг



Ваше мнение



CAPTCHA