Категория
Информатика
Тип
реферат
Страницы
11 стр.
Дата
30.03.2014
Формат файла
.html — Html-документ
Архив
1013752.zip — 5.42 kb
  • sistemy-schislenija-3_1013752_1.html — 23.81 Kb
  • Readme_docus.me.txt — 125 Bytes
Оцените работу
Хорошо  или  Плохо


Текст работы


--PAGE_BREAK--Сложение чисел с фиксированной запятой

Алгебраическое сложение чисел с фиксированной запятой в цифровых машинах может производиться в одном из машинных кодов: прямом, дополнительном или обратном. Чаще всего используется либо дополнительный, либо обратный код. При этом знаковый разряд и цифровая часть числа рассматривается как единое целое, в результате чего с отрицательными числами машина оперирует как с положительными, независимо от того, представлены ли они в виде правильных дробей или в виде целых чисел. Главное достоинство дополнительного и обратного кодов заключается в том, что правильный знак суммы получается автоматически в процессе суммирования знаковых цифр операндов и цифры переноса из соседнего младшего разряда. В случае возникновения единицы переноса из знакового разряда суммы ее нужно отбросить при сложении в дополнительном коде и прибавить к младшему разряду суммы при сложении в обратном коде (т. е. произвести циклический перенос единицы переполнения).

Алгебраическое сложение много разрядных чисел обычно организуется как регулярный процесс, состоящий из n одинаковых операций поразрядного сложения вычитания, где n- количество разрядов в каждом из операндов).

При этом в зависимости от знаков слагаемых возможны четыре случая:

1) Х1 > 0,     Х2 > 0,      Х3  = Х1 + Х2  > 0;

2) Х1 > 0,     Х2 < 0,      Х3  = Х1 + Х2  > 0;

3) Х1 > 0,     Х2 < 0,      Х3  = Х1 + Х2  < 0;

4) Х1 < 0,     Х2 < 0,      Х3  = Х1 + Х2  < 0;

Примеры сложения чисел с фиксированной запятой были рассмотрены выше.

Сложение чисел с плавающей запятой

Если имеются два числа в нормальной форме: Х1 = m1 10p1 и Х2 = m2 10p2, то для того чтобы их можно было сложить, нужно предварительно привести их к одному и  тому же порядку Робщ, т. е. преобразовать одно из слагаемых, например, первое следующим образом:

Х1 = m1 10p1  = m1* 10p1 = m1* 10pобщ.

Далее можно вынести степень основания системы за скобки и произвести сложение мантисс: Х1 + Х2= m1* 10pобщ. + m2 10pобщ. = (m1* + m2 ) 10pобщ.

Преобразовывать всегда нужно меньше слагаемое, так как в противном случае произойдет переполнение разрядной сетки мантиссы преобразуемого числа.

Машинная операция сложения чисел в нормальной форме распадается таким образом, на 4 этапа:

1.  Уравниваются порядки слагаемых: меньший порядок увеличивается до большего, мантисса преобразуемого числа сдвигается вправо (число денормализуется) на соответствующее количество разрядов. Практически в машинах производится вычитание порядков операндов. Знак и модуль разности Р1 — Р2 определяют соответственно, какое из слагаемых нужно преобразовывать и на сколько единиц следует сдвигать мантиссу преобразуемого числа.

2.  Производится преобразование мантисс слагаемых в один из модифицированных кодов.

3.  Мантиссы слагаемых суммируются по правилам сложения дробных чисел с фиксированной запятой.

4.  В случае надобности мантисса суммы переводится в прямой код, производится нормализация суммы и округление ее мантиссы.

ПРИМЕР. Используя дополнительный код, сложить два числа:

[X1]пр  = 0  101;  1,10101     и   [X2]пр = 0  100 ;        1,11001

                                                             порядок       мантисса

РЕШЕНИЕ:

1.      [X2]пр = 0  101;  1,011001

2.                         [m1]мод= 11,01011;              [m1]мод= 11,100111.    

             доп                                                      доп

3.                            [m1]мод= 11,01011         

·                                       доп

[m2]мод= 11,01011        

          доп


[m3]мод= 110, 111101     

         доп


отбрасывается  запрещенная комбинация

4.  Комбинация знаковых цифр мантиссы показывает, что сумма денормализована влево (всегда только на один разряд)

Произведем нормализацию суммы вправо


[m3]мод= 10, 111101                 1,0111101

           доп

Робщ = 0,101 + 0,001 = 0,110

Далее переводим сумму в прямой код и производим округление ее мантиссы до пяти разрядов.

Ответ: [X3]пр = 0  110 ;        1,1000011   ~   0  100;   1, 10001

                                                                    порядок   мантисса

    продолжение

--PAGE_BREAK--Умножение чисел с фиксированной запятой

Наиболее просто умножение выполняется в прямом коде, независимо от того, являются ли операнды целыми или дробными числами. В машинах с фиксированной запятой оно реализуется в два этапа.

1.  Определяется знак произведения с помощью сложения знаковых цифр сомножителей по модулю два, где нуль соответствует плюсу, а единица — минусу:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0

Вручную это эквивалентно:

(+) (+)  = (+);   (+) (-) = (-);   (-) (+) = (-);    (-) (-) = (+).

2.  Производиться перемножение модулей сомножителей, затем в случае необходимости округление полученного модуля произведения, после чего к модулю результата приписывается его знак, определенный на первом этапе.

Умножение производится по обычным правилам арифметики согласно двоичной таблицы умножения. Произведение модулей |Х3| = |Х1| * |Х2| двух (например дробных) чисел, где множитель Х2 = Х21 2-1 + Х22 2-2 +…+ Х2n2-n,      чаще всего вычисляется как сумма так называемых частичных произведений:

           n

/Х3/ = å/Х/ Х2i2-i

                i=1

В машинах может быть реализовано как умножение, начинающееся с младшей цифры множителя (наиболее привычный способ), так и умножение, начинающееся со старшей цифры множителя. При умножении вручную в первом случае частичные произведения сдвигаются влево, во втором — вправо.

ПРИМЕР. Перемножить числа [X1]пр  = 0,1010 и [X2]пр = 1,1101

Решение.

1.  Определяем знак произведения 0 + 1 = 1.

2.  Перемножим модули операндов, порядок перемножения определяется нумерацией цифр множителя:

1-й способ

         0,1010                                                                 0,1010

    
 х 0,1101



Ваше мнение



CAPTCHA