Категория
Информатика
Тип
реферат
Страницы
12 стр.
Дата
22.03.2014
Формат файла
.html — Html-документ
Архив
1009688.zip — 6.18 kb
  • lisp-realizacija-operacij-nad-matricami_1009688_1.html — 24.15 Kb
  • Readme_docus.me.txt — 125 Bytes
Оцените работу
Хорошо  или  Плохо


Текст работы

Содержание

Введение 2

1 Постановка задачи 4

2 Математические и алгоритмические основы решения задачи 7

2.1 Сумма матриц 7

2.2 Разность матриц 7

2.3 Умножение матрицы на число λ 8

2.4 Умножение матриц 9

2.5 Транспонирование матрицы 10

3 Функциональные модели и блок-схемы решения задачи 12

4 Программная реализация решения задачи 18

5 Пример выполнения программы 27

Заключение 29

Список использованных источников и литературы 30

Введение

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т.е. системы m уравнений 1ой степени с n неизвестными:

/>a11x1 + … + a1n xn = b1 ;

a21x1 + … + a2n xn = b2 ;

………………………………

am1x1+ … + amnxn = bm .

Здесь x1, …, xn – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1ой степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г.Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n) строить так называемые определители, при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы, или матрицы, стали предметом самостоятельного



Ваше мнение



CAPTCHA